Intensity-dependent exciton dynamics of (6,5) single-walled carbon nanotubes: momentum selection rules, diffusion, and nonlinear interactions.

نویسندگان

  • D Mark Harrah
  • Jude R Schneck
  • Alexander A Green
  • Mark C Hersam
  • Lawrence D Ziegler
  • Anna K Swan
چکیده

The exciton dynamics for an ensemble of individual, suspended (6,5), single-walled carbon nanotubes revealed by single color E(22) resonant pump-probe spectroscopy for a wide range of pump fluences are reported. The optically excited initial exciton population ranges from approximately 5 to 120 excitons per ∼725 nm nanotube. At the higher fluences of this range, the pump-probe signals are no longer linearly dependent on the pump intensity. A single, predictive model is described that fits all data for two decades of pump fluences and three decades of delay times. The model introduces population loss from the optically active zero momentum E(22) state to the rest of the E(22) subband, which is dark due to momentum selection rules. In the single exciton limit, the E(11) dynamics are well described by a stretched exponential, which is a direct consequence of diffusion quenching from an ensemble of nanotubes of different lengths. The observed change in population relaxation dynamics as a function of increasing pump intensity is attributed to exciton-exciton Auger de-excitation in the E(11) subband and, to a lesser extent, in the E(22) subband. From the fit to the model, an average defect density 1/ρ = 150 nm and diffusion constants D(11) = 4 cm(2)/s and D(22) = 0.2 cm(2)/s are determined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron correlation effects on the femtosecond dephasing dynamics of E22 excitons in (6,5) carbon nanotubes.

Highly nonlinear pump fluence dependence was observed in the ultrafast one-color pump-probe responses excited by 38 fs pulses resonant with the E(22) transition in a room-temperature solution of (6,5) carbon nanotubes. The differential probe transmission (ΔT/T) at the peak of the pump-probe response (τ = 20 fs) was measured for pump fluences from ∼10(13) to 10(17) photons/pulse cm(2). The onset...

متن کامل

Diffusion-limited exciton-exciton annihilation in single-walled carbon nanotubes: A time-dependent analysis

To provide physical insight into the recently observed photoluminescence saturation behavior in singlewalled carbon nanotubes implying the existence of an upper limit of exciton densities, we have performed a time-dependent theoretical study of diffusion-limited exciton-exciton annihilation in the general context of reaction-diffusion processes, for which exact treatments exist. By including th...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes.

We report a detailed study of ultrafast exciton dephasing processes in semiconducting single-walled carbon nanotubes employing a sample highly enriched in a single tube species, the (6,5) tube. Systematic measurements of femtosecond pump-probe, two-pulse photon echo, and three-pulse photon echo peak shift over a broad range of excitation intensities and lattice temperature (from 4.4 to 292 K) e...

متن کامل

Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: exploring the upper density limit of one-dimensional excitons.

We have observed that photoemission from single-walled carbon nanotubes saturates in intensity as the excitation intensity increases. Each emission peak arising from specific-chirality tubes exhibited a saturation value independent of the excitation wavelength, suggesting an upper limit on the exciton density for each nanotube species. We developed a model based on diffusion-limited exciton-exc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 2011